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Sacramento-San Joaquin Delta 
Sailing to Stockton in a Night Scene on the San Joaquin River  (Hutchins, 1857) 

“An interminable sea of  

tules extends … up the  

valley of the San Joaquin” 



   ENGINEERING LABORATORY FOR FLUID MOTION IN THE ENVIRONMENT 

Sacramento-San Joaquin Delta 

Hutchins (1851) 

Night Scene on the San Joaquin River 

Sacramento R. 

Suisun Bay 

San Joaquin R. 
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Sacramento-San Joaquin Delta 
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Restored wetlands in S-SJ Delta 
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Restored wetlands in S-SJ Delta 

How can restored wetlands 

be managed to capture 

more CO2 and release 

less CH4? 
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Wetland models (e.g. CLM4Me) 
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Gas Flux in Wetlands 
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Gas Flux in Wetlands 
DO is the best indicator or 

redox status in wetland 

surface waters (Reddy and 

DeLaune, 2008) 

 

Oxygen fluxes into the water 

column 

•Enhance methanotrophy 

•Inhibit methanogenesis 
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Wetland models (e.g. CLM4Me) 
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Wetland models (e.g. CLM4Me) 


 

2

2
O m

O
F D

z

z 

Riley et al., 2011 


 

4

4
CH m

CH
F D

z

How are gas fluxes through the 

wetland water column best modeled? 



   ENGINEERING LABORATORY FOR FLUID MOTION IN THE ENVIRONMENT 

Transport Model Options 
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Transport Model Options 
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Profile data 

support use of 

film model 

Transport Model Selection 
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Transport Model Selection 
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We’re going to find flux using k 

But what is k? 
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k in wetlands 

•Field studies 

•k600=0.3-1.8 cm hr-1 (Everglades RSL) 

•k600=0.8 cm hr-1 (hardwood swamp) 

•k600=0.2-0.7 cm hr-1 (flooded boreal forest) 

•Empirical function of forcings 

 not yet known 

•Universal divergence model 

 not yet tested 
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Empirical k models in other flows 

•Rivers k=f(u*) 

•Oceans k=f(U10)  

•Lakes k=f(U10, thermal stratification) 

Example: k ~ (U10)
2  

[Wanninkof 1992]  

used to calculate global 

patterns in air-sea CO2 flux 

[Takahashi et al, 2001] 
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Causes of Wetland Mixing 

Thermal convection 
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Causes of Wetland Mixing 

current 
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Causes of Wetland Mixing 

wind 
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Causes of Wetland Mixing 

wind 

seiche 
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Causes of Wetland Mixing 

wind 

shear 

Thermal convection 

How does k vary with wind shear and 

thermal convection in wetlands? 
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Vegetation 

Measuring flux and k in laboratory 
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Measuring flux and k in laboratory 
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Schoenoplectus acutus (tule) 

density and spatial pattern  

x (cm) 

y
 (cm

) 

Simulated stem pattern 

Measuring flux and k in laboratory 
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Measuring flux and k in laboratory 

Thermal convection 

shear 



   ENGINEERING LABORATORY FOR FLUID MOTION IN THE ENVIRONMENT 

Wind, thermal stratification levels 

<Ucanopy> between 0.05 m s-1 and 1.1 m s-1 

wind 

Thermal stratification 

q between -300 W m-2 and 115 W m-2 
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Choice of wind speeds to measure 
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Choice of stratification cases 
Twitchell Island wetlands heat flux histograms (June-Sep, 2010) 

Data source: Bryan Downing (USGS) 
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Wind, thermal stratification levels 

<Ucanopy> between 0.05 m s-1 and 1.1 m s-1 

wind 

Thermal stratification 

q between -300 W m-2 and 115 W m-2 
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O2 

surfactant 

Measuring flux and k in laboratory 



   ENGINEERING LABORATORY FOR FLUID MOTION IN THE ENVIRONMENT 

Outline 
• Motivating example: the Sacramento-San 

Joaquin Delta 

• Background 
– Wetland gas fluxes 

– Transport models 

– Causes of wetland mixing 

• Lab measurements of gas fluxes 

• A gas transport model for wetlands 
– Empirical gas transfer velocity (k) model 

– Universal k model 

 

 

 



   ENGINEERING LABORATORY FOR FLUID MOTION IN THE ENVIRONMENT 

k as an empirical model of forcings 
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k as an empirical model of forcings 
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k as an empirical model of forcings 

Thermal convection 

wind shear 
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Calm 
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Windy 

Night 

q < 0 
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Winds 
k600  0.1 cm hr-1 k600  0.5–1 cm hr-1 

k600  2-4 cm hr-1  

k600  5 cm hr-1 (q<-300 W m-2) 

Neither thermal 

convection nor 

wind are 

important drivers 

of gas transfer 
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k as an empirical model of forcings 

How does this vary with plant 

geometry and canopy structure? 
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k as an empirical model of forcings 

How does this vary with plant 

geometry and canopy structure? 

*** universal mechanistic model for k *** 
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0

nu v
k Sc

x y
   

    

0.5

(Turney et al., 2005) 

(McKenna and McGillis, 2004) 

Universal mechanistic model for k 

surface 

velocity 

divergence 
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Universal mechanistic model for k 

plant geometry & canopy structure 
 

surface velocity field 
 

surface velocity divergence 
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Flow in laboratory wetland model 

Particle Image Velocimetry (PIV) 
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Refractive Index Matching 
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Wind 
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Wind 
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Velocity Field 

Wind 

No data 
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No data 
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Wind 

Universal mechanistic model for k 
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k as an empirical model of forcings 
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k as an empirical model of forcings 
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k fits into wetland models 
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Other Implications:  
 

• k results could be used to partition eddy 

covariance data 

• k results could also be used for gas flux 

measurement 
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